An Augmented Lagrangian Method for Parameter Identifications in Parabolic Systems
نویسندگان
چکیده
منابع مشابه
An augmented Lagrangian method for distributed optimization
We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods kno...
متن کاملNumerical identifications of parameters in parabolic systems
Abstract. In this paper, we investigate the numerical identifications of physical parameters in parabolic initial-boundary value problems. The identifying problem is first formulated as a constrained minimization one using the output least squares approach with the H 1-regularization or BV -regularization. Then a simple finite element method is used to approximate the constrained minimization p...
متن کاملOptimality properties of an Augmented Lagrangian method
Sometimes, the feasible set of an optimization problem that one aims to solve using a Nonlinear Programming algorithm is empty. In this case, two characteristics of the algorithm are desirable. On the one hand, the algorithm should converge to a minimizer of some infeasibility measure. On the other hand, one may wish to find a point with minimal infeasibility for which some optimality condition...
متن کاملAugmented Lagrangian Filter Method∗
We introduce a filter mechanism to force convergence for augmented Lagrangian methods for nonlinear programming. In contrast to traditional augmented Lagrangian methods, our approach does not require the use of forcing sequences that drive the first-order error to zero. Instead, we employ a filter to drive the optimality measures to zero. Our algorithm is flexible in the sense that it allows fo...
متن کاملAn Augmented Lagrangian Method for Optimization Problems in Banach Spaces
We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Moreover, we discuss the convergence properties of our algorithm with regard to feasibility, global ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2001
ISSN: 0022-247X
DOI: 10.1006/jmaa.2001.7593